This article has been accepted for publication in Computing in Science and Engineering but has not yet been fully edited.
Some content may change prior to final publication.

A multithreaded modular software toolkit for control of complex experiments

N. Sinenian,® A. B. Zylstra, M. J.-E. Manuel, J.A. Frenje, A. Kanojia, J. Stillerman, and R. D. Petrasso
Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA

(Dated: 1 March 2012)

A multithreaded modular software toolkit has been developed for centralized monitoring and control of
complex scientific experiments and instruments. The Modular Control Toolkit (MCT) supports UNIX-like
operating systems and provides a reusable framework for user-developed modules to share data, setup software
interlocks and to utilize a dedicated thread for hardware communication. Developers need only to create these
modules, loaded by the toolkit, to communicate with and to control hardware specific to their application.
The open-source nature of the toolkit makes it extensible while its use of a standard programming language
(C++) does not limit users to a particular set of development tools. The toolkit is presently deployed for
control of the MIT Linear Electrostatic Ion Accelerator.

I. INTRODUCTION

In the course of building a new experimental appara-
tus, one is typically faced with the challenge of designing
and building software for control and data acquisition.
Depending on the scale of the experiment, several options
are available to the experimenter. One such option is to
create a control scheme from scratch, using a program-
ming language and operating system of choice, with the
use of helpful guides' and various libraries. Another op-
tion is to use a development toolkit; such toolkits, which
are available for various platforms, simplify the design
process to a variable extent. They come in a number of
flavors:

1. Device-driver development toolkits (DDKs),?
which simplify hardware communications code, al-
lowing the experimenter to focus on the software
framework for the control application itself.

2. Simplified integrated development environments
(IDE), with simplified proprietary program-
ming languages and proprietary user-interface
controls.* 6

3. Application-specific IDEs, that utilize standard-
ized programming languages (such as C) and typi-
cally furnish the developer with generic libraries for
hardware control.”

4. Complete control solutions, which are open-source
and commercial software packages specifically de-
signed for industrial control.®Y

Several options exist for the experimenter both for con-
trol and data acquisition; here we focus solely on the
former, although there is no reason why the toolkit de-
scribed here cannot be used for the latter. Note that
while this toolkit does not perform functions in real-time,
it is intended to interface to and monitor such controllers;

a) nareg@psfc.mit.edu

Digital Object Indentifier 10.1109/MCSE.2012.34

a number of software packages are readily available for
real-time applications.!0!!

These options each have strengths and weaknesses.
DDKs ease driver development but do not provide any
framework for the application which must be written
from scratch. Such DDK’s for UNIX-like systems are
also difficult to find.

Simplified IDEs facilitate development by introducing
a simplified programming language and toolkit which en-
capsulates threading and low-level implementation de-
tails, such as opening communication ports and sockets.
Though this eases the development of a control system,
making it attractive to, if not ideal, for novice users,
encapsulation of implementation details means that ad-
vanced debugging, control of thread and process exe-
cution, thread synchronization and mutual-exclusion of
shared data structures is difficult'?. Furthermore, since
the programming languages and toolkits are proprietary
and closed-source, one is locked-in to using propriety de-
bugging and optimization tools from the vendor.

Application-specific IDEs typically provide the devel-
oper with convenient libraries (though often close-source)
for hardware access but lack a re-usable framework for
control applications. Thus, while hardware access may
be readily achieved, significant amounts of time must be
spent implementing an infrastructure for multithreading,
centralized monitoring and supervisory functions (e.g.
interlocks).

Finally, a number of open-source and commercial soft-
ware packages are available which are designed specif-
ically for industrial control. One such package is the
Experimental Physics and Industrial Control System
(EPICS).” It has the advantage of being open-source with
a built-in distributed infrastructure, making it ideal for
large-scale systems. Though it is powerful and scalable, it
is not well suited for novice users and lacks built-in super-
visory components; it is also in excess of what is required
for a small to medium sized facility (non-distributed con-
trol system, with tens of hardware components to con-
trol) such as the MIT Linear Electrostatic Ion Acceler-
ator (LEIA).13 Another alternative, RSView32,% is a
commercial package with automation and control func-
tionality similar to that of the MCT; it is however a

1070-9924/$26.00 2011 IEEE

This article has been accepted for publication in Computing in Science and Engineering but has not yet been fully edited.
Some content may change prior to final publication.

2

Toolkit Type DDK Simplified IDE Application-Specific IDE|Complete Control Solution MCT
Example(s) MS WDK LabVIEW NI LabWindows RSView EPICS -
License Proprietary, Commercial Open-source |Open-source
Operating Windows Windows, OS X, Windows Cross-Platform
System(s) Linux (partial)
Distributed) Limited No Yes Yes No

(e.g. network variables)
Modular - Yes No No Yes Yes
Built-in
Supervisory - No No No No Yes
Component
Multithreading - Yes No No Yes Yes
Infrastructure
Language C/C++ Proprietary C - C C/C++
Support
IDE No Proprietary No

TABLE I. Various toolkit types that may be used to build a full control solution. Comparison is made between the license
type, operating system (OS), whether the toolkit is intended for distributed control, whether it is modular, whether it has
supervisory components (e.g. interlocks) and if it has an infrastructure which eases multithreading.

closed-source package, making it less extensible, with lim-
ited operating-system support.

The Modular Control Toolkit (MCT) incorporates the
strengths of each of the approaches discussed and is de-
signed with control applications in mind. It is open-
source, written in C++ and built using open, portable
libraries such as GTK+'® and Glib'® which are avail-
able under the Lesser General Public License!” (LGPL).
It provides a modular framework, allowing one to iso-
late and re-use significant portions of the code as grad-
ual changes are made to an experiment or for an entirely
different experiment altogether; modularity readily al-
lows for the systematic testing and debugging of complex
code!®. Users have the option of launching and managing
threads with complete control over execution, or using
the pre-existing threading infrastructure and allowing the
framework to manage and control execution. Further-
more, features common to a medium or large-scale exper-
imental apparatus, such as interlocks, are built-in to the
framework. Finally, module development and framework
customization is not restricted to an integrated develop-
ment environment or compiler. Features of the different
toolkit varieties, including the MCT, are compared in
Table L.

This paper is organized as follows: Section II gives the
reader an overview of the various software components
which make up the toolkit and discusses implementation
details of the code; section III presents some of the im-
plementation details of a sample module; section IV dis-
cusses some of the development challenges and the initial
deployment of the toolkit at MIT; section V describes the
future direction of the toolkit.

Digital Object Indentifier 10.1109/MCSE.2012.34

Il. OVERVIEW AND IMPLEMENTATION

The MCT was originally developed for use on the MIT
LEIA but with a broader scope of application in mind.
The specifications for the toolkit may be understood by
considering the fact that several elements are common to
most control systems software.

Among these include the need for interlocks to help
ensure the safety of the apparatus and proper execution
of the experimental process. At MIT, for example, the
toolkit is used to ensure that vacuum gate valves are
not inadvertently opened by an operator when doing so
could put an unnecessarily high load on a pump and lead
to potential failure of that pump. The toolkit is not re-
dundant in its implementation of interlocks, and is not
meant to be used to protect operators. Software inter-
locks should be used only as a level of redundancy for
existing hardware interlocks in the context of protecting
operators. Several high-voltage bias supplies at MIT are
hardware-interlocked by direct electronic circuitry to ei-
ther access panels or pressure gauges. This is to ensure
that they are powered off when human contact is physi-
cally possible. The toolkit’s software interlocks are used
to provide a parallel path of redundancy by monitoring
the pressure readout from the gauge and independently
controlling the power supply. Thus, both the hardware
and software interlock need to be functioning properly to
allow operation of the bias supply.

An additional feature common to control systems is a
multithreaded code; this allows continuous communica-
tion with hardware to continue in the background while
retaining a responsive user-interface (UTI). Finally, since
most machines or experiments evolve over time, parts
of the control software evolve with the hardware while

1070-9924/$26.00 2011 IEEE

This article has been accepted for publication in Computing in Science and Engineering but has not yet been fully edited.
Some content may change prior to final publication.

Sensors & Sensors & Sensors &
Actuators Actuators Actuators Transducers
| pc | | pc | [pc | Real-time
controllers
A A A
Hardware
Software
v v User
| Module | | Module | | Module | developed
I l module code
Control
Module |[Global Variable |[System |: Toolkit
[Interlocks H
: Management [| Management | |Preferences|:
FIG. 1. Simplified architecture of control software written

using the MCT, illustrating how real-time controllers (con-
nected to transducers), user-developed code (herein referred
to as the module) and the toolkit interact together. The mod-
ule is a shared object loaded by the toolkit at run-time.

other parts are reused in subsequent versions of the ex-
periment. This naturally leads to a modular design where
each module presents both an interface to the hardware
and to the operator via the toolkit, as shown in Fig. 1;
in this way modules may be re-used, removed, or evolved
as the experiment changes. Note that while the toolkit
does not operate in real-time, it is intended to interface to
and monitor real-time hardware controllers. It is these
real-time controllers which then drive and monitor ac-
tual hardware. The MCT is thus a means for centralized
monitoring and operation of an experimental apparatus.

Given the modular design, it is also often desirable
to share data between modules and potentially between
threads. This requires mutual-exclusion locking of the
data structures (shared data is limited to RAM at the
present). The motivation for shared data may not be en-
tirely obvious; certain tasks, such as logging of pertinent
parameters (e.g. run-time performance metrics associ-
ated with the experiment) are centralized functions and
may even be implemented as modules. Such tasks re-
quire access to all variables of interest, which are likely
be distributed among modules. As another example, con-
sider the implementation of an interlock system, where
one would need to “lock down” a system when a param-
eter of interest crosses a threshold value. For example,
one might want to lock down operation of a power supply
when a pressure reading elsewhere in the system crosses a
threshold value. This requires access to both the variable
holding the pressure, which is constantly updated by one
module and to the interlock system of another module.

The toolkit was designed to meet all of these specifi-
cations. The architecture is illustrated in the class dia-
gram shown in Fig. 2 using standard Unified Modeling
Language (UML) notation. Note that a significant num-
ber of auxiliary operations and attributes are suppressed

Digital Object Indentifier 10.1109/MCSE.2012.34

in this model so as to focus on the core architecture
and functionality. The entry point for the toolkit is the
Console: :run() function, which is called after a Con-
sole object is instantiated. As shown in the UML model,
this Console object is a container for exactly one instance
of each of the Prefman, IntLockMan and ModMan classes;
these objects are responsible for managing toolkit prefer-
ences, interlocks and modules, respectively. Upon execu-
tion, the console will create an instance of each of these
classes, initialize the multithreading engine and then ini-
tialize each of the three aforementioned objects, at which
point it will execute the GTK event loop and wait for user
input.

All user-developed modules are required to inherit
from the class ModBase, as shown in Fig. 2. This base
class provides an interface to each module for registering
and un-registering interlocks and global variables, for set-
ting and retrieving the value of global variables, for post-
ing messages to a centralized console and for reading and
writing configuration data associated with the module.
The toolkit facilitates the storage and retrieval of pref-
erences associated with any given module by handling
reading, writing and parsing of configuration data to and
from disk. It is left up to the module designer to use the
toolkit’s interface functions to perform these tasks. Note
that interlock system definitions and global variables are
stored in the interlock manager and the console, respec-
tively. Thus, the base class must access these two objects
to perform the aforementioned tasks on behalf of each
module. The inheritance and class permissions are set to
allow the base class ModBase access while shielding the
user-defined module class from both the implementation
details of and access to the rest of the toolkit. Within
the toolkit, the class ModBase is packaged as a shared
library, which has two main advantages: (1) Since the
code contained within the base class is shared between
all modules, linking at run-time to a common library re-
duces the executable size and (2) Internal changes may
be made to this base class, as optimization and enhance-
ments are implemented in future versions of the toolkit,
without the need to re-build any of the modules; this
greatly enhances maintainability of the toolkit.

Since modules themselves are compiled into shared li-
braries and loaded at a user’s request, an additional re-
quirement is that they must implement a pre-defined in-
terface. This allows the module manager to properly
load, unload and query each module. For ease of develop-
ment, a template including a skeleton module is provided
in the toolkit source package which implements these in-
terface symbols; it also sets up an environment for prop-
erly compiling module source code into a shared library.

Next, note the function ModBase::thread_body().
This function may be overridden by the module and in
that case should contain user-defined code to be executed
within a dedicated thread; it is called repeatedly within
the body of a loop. Alternatively, the user may wish
to setup their own thread and ignore these functions;
the toolkit does not preclude one from doing so. In any

1070-9924/$26.00 2011 IEEE

This article has been accepted for publication in Computing in Science and Engineering but has not yet been fully edited.
Some content may change prior to final publication.

IntLockMan

Attributes

- rules : map
- interlocks : map

Operations

+ initialize()

¢

Console

PrefMan Attributes

- globals: ma
Operations 9 P

Operations

0
&

ModMan

+ initialize()

+run

Operations
+ initialize()
+ load_module()
+ unload_module()

4
<Module> <CommClass>
Operations Redefined 0.* Attributes

from ModBase <—
S Operations

+ initialize()

+ terminate() |

#thread_body() |[-===========---- 1

)

ModBase

Operations

register_interlock()
unregister_interlock()
get_interlock_state()

register_global_var ()
unregister_global_var()
get_global_var_val()

These classes are each contained
in separate shared libraries and
linked at run-time

#write_cfg_key()
#read_cfg_key()
#remove_cfg_key()

post_message()
+run()

+ stop()

+ initialize()

+ terminate()

thread_body()

FIG. 2. Class diagram for the Modular Control Toolkit (MCT) using standard Unified Modeling Language (UML) notation.
The core classes are shown on the left side: Console, IntLockMan, PrefMan and ModMan, which implement the console, the
interlock manager, the preferences manager and the module manager, respectively. All user modules inherit from ModBase,
which provides an interface for interlock and shared variable functions. For completeness, a shared library one might use for
communicating with hardware devices are shown (i.e. an object of class type <CommClass>). Instances of classes required

for hardware communication are contained by the user module.

case, two additional functions, ModBase: :initialize()
and ModBase: :terminate (), may be overridden to per-
form module (de-)initialization (after)before the dedi-
cated loop (stops)starts. The threading framework avail-
able to toolkit users does not incorporate any kind of su-
pervisory thread prioritization when scheduling threads.
However, since the MCT is built using GLib, developers
may use library functions to yield or to prioritize thread
execution as deemed necessary.

Finally, consider the interlock manager, shown in the
screenshots of the user-interface in Fig. 3. The operator
may define rules at run-time which are checked by the
interlock engine. Shown in the figure is an example of a
rule for locking down a turbopump (i.e. the interlock sys-
tem). In order for the interlock system to be active, the
monitor variable “ACC_IG1” (which is a standard toolkit
global variable registered by a module) must be greater
than 1 x 102 Torr. What actually happens when the in-
terlock system is engaged is left up to the owning module,
in this case, “leyboldtd20ctrl.so.” The interlock manager
then does several things: (1) provides a means for user-
defined modules which inherit form ModBase to register
and check the status of interlocks (2) a user-interface for
the operator to define rules for each interlock system (sev-
eral may be defined for each system) and (3) an engine to
check operator-defined rules, which runs in a dedicated
thread in the background. In this way, modules do not

Digital Object Indentifier 10.1109/MCSE.2012.34

need to know how they fit into the bigger picture of the
experimental apparatus; they simply register and update
measured quantities of interest and register interlock sys-
tems for the hardware device they are operating. How
the various devices are integrated together is left up to
the operator at run-time, making modules more generic
and re-usable.

The activity diagram in Fig. 4 best illustrates the oper-
ation of the interlock engine; the sequence of events out-
lined in the figure take place within a dedicated thread.
After initialization, the engine traverses a std::map of
rules. A mutual-exclusion lock is obtained on this data
structure as it is traversed. For each rule, the engine
checks to ensure that the monitor variable and interlock
system for that rule are available (that the module(s)
which registered them are loaded). If they are not avail-
able, the engine marks the rule as inactive and moves
onto the next rule; if both the monitor variable and in-
terlock system become available at a later time, the en-
gine will mark the rule as valid and proceed. Note that
to check for these two conditions, the engine must obtain
read-only locks on both the interlock systems and mon-
itor (global) variable data structures to prevent any of
the module threads or the main thread from attempting
to modify these data structures; mutual-exclusion and
read/write locks are implemented using standard Glib
methods. Checking the validity of rules in this manner al-

1070-9924/$26.00 2011 IEEE

This article has been accepted for publication in Computing in Science and Engineering but has not yet been fully edited.
Some content may change prior to final publication.

Interlock Manager [;‘ |E| |z|

Group v Active Interlock System Interlock Owner
= Accelerator Turbopump

c ACC_TP1

leyboldtd20ctrl.s0.1.0.0 ACC_PG1

Module Manager

Maonitor Variable Menitor Owner Operator Threshold

srsigelO0ctrlso.1.0.0

1.00e-02 torr

Data Plotter (plotter.s0.1.0.0)
Plots registered global variables from various modules

Leybold TurboVAC Control (leyboldtd20ctrl.s0.1.0.0)
Monitoring and control of Leybold TD20 pump pontrollers

Add Group || Remove Group | | Add Rule H Remove Rule ‘

Console Help

FriSep 23 20:06:19 2011] Configuration data loaded from '.consi
FriSep 23 20:06:19 2011] Logging console messages to 'fhome

NEC RF lon Source Control (LEIA) (ionsrc.so.1.0.0)
Controls RF, probe, extraction, focus and gas flow rate

SRS IGC100 Gauge Control (srsigcl00ctrl.so.1.0.0)
Monitoring and basic control of SRS |GC100 gauge controllers

System Process Monitor (sysprocmon.so.1.0.0)

Monitor and control of entire system process

| Close

Fri Sep 23 20:06:19 2011] Interlock engine started
Fri Sep 23 20:06:51 2011] Loaded module 'leyboldtd20ctrl.so.]
Fri Sep 23 20:06:51 2011] [Leybold TurboVAC Control] Module
Fri Sep 23 20:06:52 2011] Loaded module 'srsigel00ctrlso.1.0
Fri Sep 23 20:06:52 2011] [SRS IGC100 Gauge Control] Module
FriSep 23 20:06:52 2011] [Leybold TurboVAC Control] Could
Fri Sep 23 20:06:52 2011] [Leybold TurboVAC Caontrol] Could
Fri Sep 23 20:06:53 2011] [SRS |GC100 Gauge Control] Could)

[
[
[
[
[
[
[
[
[
[

Vacuum Valve Controller (LEIA) (valvectrl.so.1.0.0)
Controls system poppet and gate valves

About Module || Configure Module |

FIG. 3. Screen capture of the MCT, showing three windows (as labeled by window titles): the Console, the Interlock Manager
and the Module Manager. Important information is presented to the operator in the Console window; modules may be loaded,
unloaded and configured from within the Module Manager; interlock rules may be defined, grouped and (de-)activated from

within the Interlock Manager interface.

lows user-defined interlock rules to remain safely defined
within the MCT as modules are loaded and unloaded.

Once a rule has been deemed valid, the engine checks
to ensure that the interlock system associated with that
rule has not already been flagged for lock by a rule that
was previously tested positive. If the system is already
flagged, the rule is ignored since the system will lock
regardless; otherwise the rule is tested. If the rule is
tested and found positive, the interlock system associated
with the rule is then flagged for lock. Subsequent rules
associated with the same interlock system are not tested,
though each rule is nevertheless traversed and checked for
validity. Finally, after all rules have been traversed, the
lock on the rules data structure is released. The flags on
all of the interlock systems are checked and systems are
locked or unlocked accordingly; these flags are reset for
the next iteration of the engine loop. Note that since the
engine runs within a dedicated thread, it sleeps for some
period of time within each iteration so to not saturate or
overwhelm the hardware.

As shown here, the implementation of interlocks and
global variables requires the locking of multiple toolkit re-
sources from within different threads. The design of the
interlock engine and global variable system ensures that
deadlock does not occur. Two design paradigms were fol-
lowed to ensure this: (a) all resource locking for these sys-

Digital Object Indentifier 10.1109/MCSE.2012.34

tems is performed internally by toolkit functions (which
are called by a module) and (b) no two toolkit functions
that lock the same resource ever wait for each other to
complete before releasing that resource. Since locking is
performed from within toolkit functions, modules do not
have direct access to these resources and therefore cannot
lockout a resource directly.

I1l. DESIGN OF MODULES

The design of data-flows for modules are largely left
up the developer. That is, module developers may take
an event-driven, data-driven or mixed approach depend-
ing on the application. For instance, certain types of
equipment may wait for and respond to user interaction
(event-driven), while in other cases one might wait for a
device to periodically send data and then either perform
processing on that data or alert the user as data comes in
(data-driven). Event-driven and data-driven approaches
are readily accomplished with the use of event-handlers
and a dedicated thread within the module, respectively.
Alternatively, and often, one might use a combination of
both techniques. For example, a simple pressure gauge
controller for a system might require continuous polling
and readout of the pressure (data-driven) as well as some

1070-9924/$26.00 2011 IEEE

This article has been accepted for publication in Computing in Science and Engineering but has not yet been fully edited.
Some content may change prior to final publication.

Wait |4 Release
rules lock

v Release interlock
Acquire system write lock
rules lock ?Yes
AII* Yes 'Acquwe Allinterlock [No
> rules » | interlock b systems
processed? system Y
: updated?
No write lock f
A4 Reset lock
Acquire globals flag
read lock A No v
Unlock Interlock
¢ Ves [Acquire —interlock [ﬂagged7
Global interlock system for lock?
exists? system Yes +
No write lock Lock
+ interlock
Interlock Yes system
nterioc - Mark rule
exist? valid
A 4 No +
Mark rule | 4 Interlock No
invalid flagged
for lock?
A 4
Yes [RuleTest| Yes
Positive?
A 4 N
o
Release
read/write Flag
lock(s) |« interlock
for lock

FIG. 4. Activity diagram of the interlock engine, illustrating
how rules are validated and tested and how associated inter-
lock systems are locked and released. The sequence of events
depicted execute within a dedicated thread.

basic control (user or event-driven) for configuration and
operation of the gauges. The toolkit facilitates the im-
plementation of any combination of these models.

As an example of the flexibility allowed by the toolkit
in conjunction with GTK and Glib in implementing a
mixed data- and event- driven module, consider a practi-
cal module which interfaces to a vacuum pump controller.
The vacuum pump itself is driven by a hardware con-
troller with a remote serial interface; the manufacturer
has provided a set of commands to retrieve information
about the status of the pump, as well as commands to
start and stop the pump. The module must present a user
interface to the operator, displaying pump parameters
such as load and temperature and allow for control of the
pump, so the user can start and stop it. To achieve the
first goal, it must interface with the pump and retrieve
its status on a periodic basis; this is best accomplished in
the background using a dedicated thread. Since the mod-
ule must periodically communicate with the instrument
in a separate thread and update the user-interface in the

Digital Object Indentifier 10.1109/MCSE.2012.34

parent thread (a GTK requirement that GUI calls be
made in the parent thread) it will have to dispatch func-
tion calls for updating the user-interface to the parent
thread. Furthermore, the mixed event-driven and data-
driven approach dictates that hardware access will occur
from two threads: (1) the dedicated thread which will
periodically poll the pump controller and retrieve param-
eters and (2) the parent thread, which handles the user-
interface event-handlers, where function calls to start and
stop the pump will occur. This naturally leads to the re-
quirement of a mutual exclusion lock for hardware access.
All of these constraints are readily handled using GTK
and Glib. The module implementing this functionality
would inherit from the class ModBase and re-implement
functions as follows:

1 class PumpControl : public ModBase
2

3 public:

4 PumpControl();

5 “PumpControl();

6

7 void initialize();

8 void terminate();

9

10 protected:

11 void thread_body(Q);

12

13 Glib: :Dispatcher update_guiQ);
14 Glib: :Mutex serial_mutex;
15

16 void update_gui_disp();
17

18 double pump_temperature;
19 double pump_load;

20

21 serial pump_connection;
22 };

The Glib::Dispatcher object is used to dispatch the
code contained in the function update_gui_disp() to
the parent thread; the connection between this object
and the dispatched function is made is made in the mod-
ule’s initialize () function. The Glib: :Mutex object is
used to lock hardware access so that only one thread may
communicate with the pump controller at a time. Finally,
the serial object is an instance of a library class which
allows communication over serial ports. The functions
shown above may be re-implemented as follows:

1 void PumpControl::initialize()
2
3 // Setup GUI
4
5 // Connect dispatcher
6 update_gui.connect(sigc: :mem_func(*this,&
PumpControl: :update_gui_disp);
// Add event handler for stopping pump
9}

1070-9924/$26.00 2011 IEEE

This article has been accepted for publication in Computing in Science and Engineering but has not yet been fully edited.
Some content may change prior to final publication.

10

11 void PumpControl::thread_body()

12 {

13 sleep(POLLING_PERIOD);

14

15 // Acquire hardware access lock

16 Glib: :Mutex: :Lock serial_access(
serial_mutex);

17

18 // Communicate with instrument, store
temperature and load values in data
members pump_connection.read(...) ;

19

20 // Release hardware lock

21 serial_access.release();

22

23 // Call update_gui_disp () in main thread
24 update_gui();

25 }

26

27 void PumpControl::update_gui_disp()

28 {

29 // Use data members to update GUI here
30 }

31

32 void PumpControl::on_stop_pump()

33 {

34 // Acquire hardware access lock

35 Glib: :Mutex: :Lock serial_access(
serial_mutex) ;

36

37 // Communicate with instrument

38 pump_connection.write(...);

39

40 // Release hardware lock

41 serial_access.release()

42 }

This bare-bones sample module allows for continuous
polling of the pump while retaining a responsive control
GUI. There are, however, some subtleties. For instance,
the creation of a Glib: :Mutex: :Lock object on line 35
(from within on_stop_pump()) is a blocking call, which
will wait for a call to release() (from within the func-
tion thread_body executing in a dedicated thread) be-
fore continuing. Omne must therefore be careful not to
make the polling period or communication time per it-
eration too long for this will cause the GUI to become
less responsive. This is seldom an issue in practice be-
cause the time-scales considered here not sufficiently long
for typical communication schemes with modern labora-
tory instruments, even over slow (9600 baud) serial de-
vices. Note that these kinds of timing considerations are
not exclusive to the MCT, but are common to all the
previously mentioned toolkits;*®7 these level of detailed
considerations must be left up to the developer since
these toolkits know nothing about the types of instru-
ments being interfaced. Note that the sample code above
does not register interlocks or global variables. These

Digital Object Indentifier 10.1109/MCSE.2012.34

may be registered, unregistered and read from within
any thread (this is properly handled by the MCT), giv-
ing the module designer much flexibility. Configuration
data, such as the serial port parameters to use when con-
necting to the pump controller may also be saved and
read using the toolkit. The sample presented here is
simplified to demonstrate the flexibility of the MCT in
its ability to accommodate various programming models.
Complete modules, written in the course of developing
this toolkit, included configuration dialogs for instrument
setup, communications error-checking, advanced GUIs,
checking and handling of interlocks, etc.

IV. DEVELOPMENT AND INITIAL DEPLOYMENT

The MCT was developed with several modules to serve
the needs of the MIT LEIA Facility. LEIA is an accel-
erator comprised of several vacuum pumps and valves,
numerous high-voltage bias supplies, and many pressure
transducers. These components interface to real-time
controllers that are interconnected with a control com-
puter and a data acquisition computer using a fiber-optic
network. In some cases, a single real-time controller
drives several components simultaneously. The control
computer drives all of these real-time controllers: pump
controllers (2), ion source controller (1), valve controller
(1) and pressure gauge controllers (2). Communication
with these controllers is implemented using four mod-
ules, each with a dedicated thread. Together with the
main thread and interlock engine, a total of six hard-
ware threads are used for normal operation. The toolkit
itself was developed on a dual-core processor with hyper-
threading support(2.4 GHz Intel Core i5) while the ma-
jority of modules were developed and tested on the LETA
control computer (2 x 2.6 GHz, quad-core AMD Opteron
processors for a total of 8 cores). The toolkit was built
using g++1? with compiler optimizations and tested on
64-bit Linux Kernels (both 2.6.x and 3.x).

The MCT’s modular, multithreaded structure is ideal
(and scalable) for the increasing number of CPU cores in
today’s and tomorrow’s computers. This structure was
one of the most difficult implementation challenges. Un-
like a monolithic control code tailored to a specific task,
the many possible uses of the MCT had to be anticipated
during the development phase. Though the modular na-
ture facilitates code re-use and makes the toolkit suitable
for a wide range of applications, the toolkit’s features and
the interface functions made available to the modules had
to cover a broad range of anticipated uses. During the
design phase, a preliminary toolkit interface was imple-
mented. This interface was then iterated upon and mod-
ified as a variety of modules were written for the LEIA
Facility. In effect, the toolkit was given time to mature
internally. A second layer of complexity was introduced
with the addition of multithreading. One of the design
requirements was the ability for modules to call toolkit
functions from within any thread. This capability meant

1070-9924/$26.00 2011 IEEE

This article has been accepted for publication in Computing in Science and Engineering but has not yet been fully edited.
Some content may change prior to final publication.

that the toolkit’s interface functions needed to be thread-
safe by preventing dead lock. A significant amount of
time was spent testing toolkit functionality with a vari-
ety of test modules. Additional pitfalls were encountered
during the initial deployment and testing phase, having
to do with the cross-platform nature of the toolkit. Al-
though the toolkit is based on the standardized Glib and
GTK+ libraries, the implementation of these libraries on
different systems can vary. During testing it was found
that the look, feel, and behavior of widgets was different
between some Linux distributions.

The toolkit could have benefited from greater consid-
eration to fault-tolerance in the early design stages. At
present, a poorly implemented module may cause adverse
effects to a running instance of the toolkit. This problem
may be alleviated by sandboxing modules (i.e. spawning
each module as a separate process rather than allowing
each module to have a dedicated thread). The benefits of
this type of architecture are twofold: 1. the running in-
stance becomes fault-tolerant, as a spawned module may
be terminated by the toolkit and re-loaded as necessary,
and 2. spawned modules may each run their own instance
of the GTK main loop, improving GUI performance (by
alleviating the load of GUI calls on a single instance).
The latter increases scalability as a greater number of
modules may be accommodated. The cost of implement-
ing this type of hierarchy was incremental during the
initial design stages, where modification of the toolkit at
present will require significant overhaul.

V. CONCLUDING REMARKS

A modular toolkit for control of scientific experiments
and instruments has been developed. The toolkit allows
novice developers to quickly build a multithreaded mod-
ular control application without simultaneously limiting
advanced users. Users have the option and not the obli-
gation of using the threading framework, shared variables
and centralized storage of configuration data. Modules
may rely heavily on these various aspects of the toolkit or
implement these features independently. Since the frame-
work is open-source and written in C++, advanced devel-
opers have the ability to use development tools of their
choice to customize and improve the inner workings of
the toolkit and to commit any improvements back to the
user community.

Future versions of the toolkit will incorporate a number
of improvements, including:

1. Full use of C++ namespaces to mitigate any ambi-
guities in user-developed module code.

2. An integrated diagnostic tool to allow users to mon-
itor the number of running threads, registered in-
terlock systems, global variables and to monitor
system resource usage.

3. Ability for modules to register callback functions
with the toolkit (event handlers) for handling

Digital Object Indentifier 10.1109/MCSE.2012.34

toolkit events such as the registration of global vari-
ables and interlock systems. This is useful to mod-
ules which take all global variable data and log it
to a database or to disk.

4. Priority scheduling of threads that lock toolkit re-
sources (indirectly by calling toolkit functions); this
will improve application performance as the num-
ber of modules accessing toolkit resources increases.

5. Execution of modules within a dedicated process
(similar to a “sandbox”) for enhanced stability, ro-
bustness and recovery from localized data corrup-
tion and run-time errors.

The MCT has proved to be a robust control solution
at the MIT LEIA Facility. It serves the needs of small
to medium scale experiments and facilities, defined here
as a system comprised of tens of hardware components
driven by one or two computers. Relative to commer-
cial control software or other open-source alternatives, it
is cost-effective and ideal for both novice and advanced
users. In addition to being a toolkit, it provides a re-
usable application framework, allowing novice users to
combine it with existing modules and use it out-of-the-
box; advanced users are free to develop modules with
little restriction.

The Modular Control Toolkit may be obtained from
the MIT Technology Licensing Office(TLO).2°

ACKNOWLEDGMENTS

This work was supported in part by the National
Laser User’s Facility (DOE Award No. DE-NA0000877),
Fusion Science Center (Rochester Sub Award PO
No. 415023-G), US DOE (Grant No. DE-FGO03-
03SF22691), Laboratory for Laser Energetics (LLE)
(N0.412160-001G), Lawrence Livermore National Labo-
ratory (No.B504974) and General Atomics (GA) under
US DOE (DE-AC52-06NA27279).

LG. Varoquaux, Computing in Science Engineering 10, 55 (2008).

2Windows Driver Kit, see http://www.microsoft.com/.

3EnTech Device Driver Kit, see http://www.entechtaiwan.com/.

4National Instruments LabVIEW, see http://www.ni.com.

5Data Acquisition Systems Laboratory, see http://www.dasylab.
com.

SMATLAB Instrument Control Toolbox, see http://www.matlab.
com.

"National Instruments LabWindows, see http://www.ni.com.

8RSView32 from Rockwell Automation, see http://www.
rockwellautomation.com/rockwellsoftware/performance/
view32/.

9FExperimental ~Physics and Industrial ~Control
(E.P.I.C.S.), see http://www.aps.anl.gov/epics/.

10yxWorks Real-Time Operating System, see http://www.
windriver.com/products/vxworks/.

' National Instruments LabVIEW Real-Time Module, see http:
//www.ni.com/labview/realtime/.

12The author recently discovered, using the toolkit described
herein, a bug in the kernel driver of a particular ethernet se-
rial device server when it was accessed simultaneously by two

System

1070-9924/$26.00 2011 IEEE

This article has been accepted for publication in Computing in Science and Engineering but has not yet been fully edited.
Some content may change prior to final publication.

threads; such a discovery is difficult, if not impossible, with heav-
ily encapsulated systems where thread execution control is less
transparent.

I3N. Sinenian, et al., Review of Scientific Instruments (2011), to
be submitted.

148, C. McDuffee, J. A. Frenje, F. H. Séguin, R. Leiter, M. J.
Canavan, D. T. Casey, J. R. Rygg, C. K. Li, and R. D. Petrasso,
Review of Scientific Instruments 79, 043302 (2008).

Digital Object Indentifier 10.1109/MCSE.2012.34

5GIMP Toolkit, see http://www.gtk.org/.

I6GNU Library, see http://developer.gnome.org/glib/.

"GNU Lesser General Public License, see http://www.gnu.org/
licenses/lgpl.html.

18G. K. Thiruvathukal, K. Laufer, and B. Gonzalez, Computing
in Science and Engineering 8, 76 (2006).

9GNU Compiler Collection, see http://gcc.gnu.org/.

20MIT Technology Licensing Office, see http://web.mit.edu/tlo/
www/.

1070-9924/$26.00 2011 IEEE

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

